ПАЛЕЦ КРИВОШИПА И ВЕДУЩАЯ КОЛЁСНАЯ ПАРА

Передача тяги на движущие колёса

Tagged Under : , , , ,

Палец кривошипа воспринимает усилия от ведущего дышла и передаёт их колесу ведущей колёсной пары. Ведущая колёсная пара (фиг. 108) представляет собой ось с напрессованными на неё двумя колёсами. Колёса состоят из колёсных центров, на которые в горячем состоянии насаживаются бандажи. На шейках осей колёсных пар монтируются буксовые подшипники.
устройство паровоза
Фиг. 107. Общий вид задней головки ведущего дышла, оборудованной роликоподшипником Чтобы облегчить вес и получить возможность проверять качество металла, оси, как правило, делают сверлёными (пустотелыми). Колёсный центр имеет ступицу оси, обод, соединительную часть между ними, ступицу пальца и противовес. Раньше соединительную часть делали спицевой, но сейчас наибольшее распространение получили дисковые центры: они гораздо прочнее и в то же время легче спицевых. В ступицу пальца запрессовывается палец кривошипа, на который насаживается контркривошип. Противовес в колёсном центре размещается против пальца кривошипа (см. гл. IX). Бандаж — это рабочая часть колеса, соприкасающаяся внешней поверхностью с рельсами. Чтобы бандаж был износоустойчивым, его изготовляют из специальной углеродистой стали. Внутренний диаметр бандажа делают меньше диаметра обода колёсного центра примерно на 1—1,5 мм на каждый метр диаметра обода. Перед насадкой бан- даж нагревают до 250—320°; бандаж при этом расширяется и в таком виде его свободно надевают на колёсный центр. Остывая, бандаж сжимается и прочно стягивает обод центра. Для большей надёжности бандаж укрепляется ещё дополнительно с помощью специального кольца. Рабочая поверхность бандажей (поверхность катания) обтачивается на конус по специальному профилю.
устройство паровоза
Фиг. 108. Ведущая колёсная пара Такая форма бандажа облегчает паровозу прохождение кривых участков пути (поворотов). Происходит это потому, что при движении паровоза по криволинейному участку оба колеса одной и той же колёсной пары, делая одно и то же число оборотов, вследствие коничности бандажей проходят неодинаковый путь, так как внутренний рельс несколько короче наружного. Если бы поверхность бандажей была цилиндрической, то в кривых участках пути происходило бы проскальзывание колёс. Проскальзывание увеличивает сопротивление движению паровоза и приводит к быстрому износу бандажей. Колёсные пары с коническими бандажами имеют и ещё одно замечательное свойство: когда паровоз движется по прямой, колёсные пары не только сохраняют своё среднее положение, так как противоположные колёса их катятся по рельсам одинаковыми окружностями, но и стремятся воспрепятствовать всякому отклонению от этого положения. Такая устойчивость колёсных пар повышает безопасность движения. В соответствии с коничностью бандажей рельсы укладываются с некоторым уклоном внутрь колеи так, чтобы нагрузка от колёсных пар передавалась по оси рельса. В период эксплуатации паровоза его колёса совершаюг миллионы оборотов. В результате непрерывного качения колеса по рельсу и большой нагрузки в месте контакта (несколько тонн на 1 см2) рабочая поверхность бандажа, особенно ведущей колёсной пары, постепенно изнашивается. Поверхность качения (круг катания) становится желобообразной. Износ бандажей по кругу катания называют прокатом; прокат характеризуется глубиной. Бандажи колёсных пар, особенно ведущих, изнашиваются неравномерно, вследствие чего величина проката в одном месте бандажа (местный прокат) может быть на 2—3 мм больше общего проката бандажа. Это объясняется особенностью работы паровой машины и движущего механизма. Если прокат бандажей колёсных пар достигнет глубины 7 мм, эксплуатировать паровоз становится опасно. При движении паровоза с таким износом бандажей ход его делается менее плавным, учащается боксование, т. е. проворачивание (проскальзывание) движущих колёс относительно рельсов. Всё это вредно отражается на работе важнейших деталей паровоза и прежде всего деталей движущего механизма. При увеличении проката до 7 мл* и его неравномерности рабочая поверхность бандажа теряет форму правильного круга. Такой бандаж расстраивает рельсовый путь, что небезопасно для движения. Кроме того, при прокате более 7 мм гребень бандажа значительно опускается и может повредить и даже срезать стрелочные болты, а при прохождении паровоза по крестовинам стрелочных переводов может произойти даже сход колё

БАЛАНС ЭНЕРГИИ В КОТЛЕ

КПД паровоза

Tagged Under : ,

Мы уже знаем, что пар в котле паровоза образуется за счёт использования тепловой энергии топлива, поступившего в топку. Однако не вся тепловая энергия, заключённая в топливе, переходит в энергию пара. Значительная часть её теряется. Эти потери даже в современных паровозных котлах съедают больше 40% содержащегося в топливе тепла. Из чего же они складываются? Во-первых, потери вызываются неизбежным уносом мелких не-сгоревших частиц топлива в дымовую трубу. Это — наибольшая часть потерь тепла в тепловом балансе котла. Они являются следствием сильной и при том пульсирующей тяги, искусственно создаваемой конусной дымовытяжной установкой. Ведь газы сгорания вылетают из топки паровоза со скоростью, достигающей 50—60 м/сек. Кроме того, часть топлива теряется, проваливаясь в зольник через, отверстия колосниковой решётки. Потери тепла, связанные с уносом и провалом несгоревших частиц топлива, называются механическими потерями. Сюда же относится потеря тепла в шлаке (с недогоревшим топливом). В сумме эти потери достигают 25%, а иногда и больше. Во-вторых, часть тепла бесполезно теряется с уходящими из котла газами, так как газы выходят из котла с температурой в среднем от 300 до 400°. Эти потери составляют около 14—16%. В-третьих, тепло теряется вследствие того, что топливо не всегда сгорает полностью. А это бывает из-за недостатка или чрезмерного избытка воздуха, подводимого в топку (см. главу II). В таких условиях углерод сгорает не в углекислый газ, а в окись углерода и при этом выделяется значительно меньше тепла. Эти потери, носящие название химических потерь, достигают 5—8%. В-четвёртых, часть тепла передаётся через наружную поверхность котла непосредственно во внешнюю среду. На этом теряется ещё около 1 % тепла. Если сложить все потери, то и окажется, что только в паровозном котле бесполезно расходуется около 40—45% тепловой энергии топлива, поступившего в топку. Иными словами, общий к. п. д. котла не превышает 55—60%.

ПЕРЕГРЕТЫЙ ПАР

Горение и парообразование

Tagged Under : , , , ,

Паровая машина паровоза приводится в действие перегретым паром, т. е. таким, температура которого в 2—2,5 раза выше температуры насыщенного пара при том же давлении. На новейших паровозах температура перегретого пара достигает 450°. Чтобы нагляднее представить себе выгоды, связанные с применением перегретого пара, сопоставим два одинаковых паровоза с давлением пара в котле (по манометру) 15 am. Пусть первый локомотив работает насыщенным паром с влажностью 5%, а второй — перегретым паром, температурой 400°. Паровая машина паровоза, работающего насыщенным паром, потребляет в час примерно 10 000 кг пара. Высчитаем, сколько будет расходовать перегретого пара машина второго паровоза. Установлено, что 1 кг насыщенного пара при давлении 15 am по манометру занимает объём 0,126 мя. Значит, 10 ООО кг пара занимают объём, разный 0,126 х 10 ООО = 1 260 м3. Если же 1 кг пара нагреть при этом же давлении до 400°, то он займёт объём 0,194 м3, а 10 000 кг — 1 940 м8, т. е. на 680 м8 больше, чем такое же весовое количество насыщенного пара. Из этого следует, что для заполнения одного и того же цилиндра (объёма) потребуется меньшее весовое количество перегретого пара. Обращаясь к нашему примеру, видим, что для заполнения в течение часа того же объёма (1 260 м3) перегретым паром потребуется уже не 10 000 кг пара, а только 1 260 : 0,194 = 6 500 кг. Сбережение значительного количества пара, а следовательно, и воды даёт возможность сэкономить топливо при выполнении той же работы. Но может возникнуть вопрос, каким же образом получается экономия топлива, если для перегрева пара требуется добавочное тепло? На первый взгляд кажется, что, выигрывая на увеличении объёма пара, мы проигрываем на затрате тепла, которое требуется для перегрева. Однако это не так. Например, при давлении по манометру 15 am и температуре 200° на приготовление 1 м3 насыщенного пара расходуется 5 200 ккал, а при тех же 15 am и перегревании пара до 400° на получение 1 м3 перегретого пара затрачивается только 4 000 ккал. Использование перегретого пара вместо насыщенного даёт экономию примерно 20—25% топлива и 30—40% воды. Другим ценным свойством перегретого пара по сравнению с насыщенным является то, что он не выделяет капелек воды при охлаждении, расширении или снижении давления, т. е. не конденсируется, пока его температура не достигнет температуры насыщенного пара. Почему вредна конденсация? Пар, превратившийся в воду, естественно, работы не производит, вследствие чего в машину надо вводить некоторое количество добавочного пара. В паровых машинах, работающих насыщенным паром, потери от конденсации составляют 25—60%. Они складываются из потерь на так называемую первоначальную и внутреннюю конденсацию. Не останавливаясь подробно на этих довольно сложных явлениях, отметим лишь главное. Читателю известно, что определённому давлению насыщенного пара соответствует определённая его температура. В цилиндры паровой машины пар впускается при давлении примерно 15 am, а выпускается при давлении 1,5—2 am. При этом впуск и выпуск пара производятся через одни и те же каналы цилиндров. Температура стенок каналов после прохода по ним отработавшего пара будет значительно ниже температуры свежего пара, впускаемого в цилиндры через те же каналы. Из-за соприкосновения со сравнительно холодными внутренними поверхностями каналов и цилиндра часть пара оседает на них в виде росы—• происходит первоначальная конденсация. Внутренняя конденсация в отличие от первоначальной происходит не на стенках каналов и цилиндров, а во всём рабочем объёме цилиндров. При высокой же температуре перегрева пар не конденсируется в течение всего времени нахождения его в цилиндрах машины. Следовательно, потери на конденсацию уменьшаются, а это позволяет уменьшить расход пара.

АВТОМАТИЧНОСТЬ ТОРМОЗА

Автотормоза

Tagged Under : ,

В настоящее время во всех поездах применяются тормоза, которые можно привести в действие не только с локомотива, но и из вагонов. Для этого проводнику или пассажиру достаточно открыть стоп-кран в одном из вагонов, в результате чего все тормоза поезда придут в действие. Автоматичность тормозов заключается в том, что при разрыве магистрали или открытии стоп-кран из вагона автоматические тормоза приходят в действие и поезд останавли-’ вается независимо от машиниста локомотива. Предположим, что в поезде, следующем по участку, внезапно произошёл разрыв упряжи или саморасцеп автосцепки; т. е. поезд разделился на две «части. В этом случае тормоза в обеих частях поезда придут в действие автоматически и произойдёт его остановка. В последнее время автоматические тормоза снабжаются специальными приборами—автостопами (см. XIV главу). Автостоп сигнализирует машинисту о приближении поезда к запрещающему сигналу, и если машинист •почему-либо не реагирует на этот сигнал, автоматически при-!ведёт в действие тормоза и остановит поезд. Таким образом, автоматические тормоза играют важнейшую роль в обеспечении безопасности .движения на железных дорогах. До появления автотормозов поезда приходилось тормозить вручную. Ручной тормоз (фиг. 155) вагона приводился в действие человеком (тормозил ыци-ком), который находился на площадке вагона. Для обслуживания поезда требовалось много тормозильщиков. Сигналы к торможению подавались свистком паровоза. Услышав сигнал, тормозилыцики приводили в действие тормоза, но обладая различной физической силой и расторопностью, они не могли достигнуть равномерного и эффективного торможения. Таким образом, судьба поезда находилась в руках тормозильщиков, а не в руках машиниста. Неудивительно поэтому, что при •ручном торможении допускаемая скорость движения, вес и длина поездов были небольшими. С ростом железнодорожных перевозок, увеличением веса и скорости поездов автоматические тормоза вытеснили ручные. Сейчас ручные тормоза применяются только на случай удержания поезда .на спуске после его остановки автоматическими (пневматическими .или электропневматическими) тормозами.

НАЗНАЧЕНИЕ ТОРМОЗОВ

Автотормоза

Tagged Under : ,

Если на горизонтальном пути машинист закроет регулятор на паровозе, т. е. прекратит впуск пара в паровую машину, то поезд сразу не остановится, а будет продолжать движение по инерции. Современные поезда развивают во время движения огромную кинетическую энергию (живую силу). Например, поезд весом 2 ООО т (2 ООО ООО кг) при скорости 50 км/час (14 м/сек) обладает кинетической энергией около 20 ООО ООО кгм. А если взять поезд того же веса, но имеющий скорость движения 100 км/час (28 м/сек), то кинетическая энергия его окажется равной 80 000 000 кгм. Чтобы представить себе величину той энергии, достаточно сказать, что её хватило бы на подъём груза в 1 т на 20 км в первом случае и на 80 км во втором случае. Иными словами, кинетическая энергия поезда измеряется несколькими десятками миллионов килограммометров. На что же она расходуется? Движению поезда всегда препятствует ряд сил: сила сопротивления встречного потока воздуха, силы трения, возникающие при качении колёс по рельсам, силы трения, действующие между деталями, трущимися друг о друга. Эти силы сопротивления движущийся поезд преодолевает за счёт работы сил пара, а при прекращении впуска пара — за счёт накопленной при работе пара кинетической энергии, запас которой постепенно уменьшается. Когда он полностью истощится, поезд остановится. Расстояние, которое пройдёт поезд до полной остановки, продолжая движение по инерции, зависит главным образом от скорости поезда в момент закрытия машинистом регулятора, а также от профиля пути, по которому поезд движется в этот период. Чем больше начальная скорость поезда, тем больший путь пройдёт он по инерции. Если машинист закрыл регулятор при скорости поезда 60 км/час, то расстояние, пройденное поездом по горизонтальному пути до полной остановки, составит около 5 000 м. При начальной скорости 70 км/час расстояние увеличится до 6 800 м. Следовательно, при поглощении кинетической энергии только силами сопротивления поезд будет проходить до остановки очень большой путь. Значит, одних сил сопротивления недостаточно для того, чтобы поезд быстро остановился в заранее намеченном месте. Ведёт ли машинист состав по большому спуску или крутому затяжному подъёму, подъезжает ли поезд к станции, если возникнет необходимость в быстрой остановке поезда (впереди красный огонь светофора, на переезде застряла автомашина и т. п.), машинист обязан срочно принять все меры к остановке поезда на кратчайшем расстоянии. Поэтому в руках машиниста должно быть сосредоточено управление такими механизмами, которые давали бы возможность в случае надобности быстро и эффективно поглощать кинетическую энергию поезда (или одиночного локомотива) для его остановки.
устройство паровоза
со стороны рельса на колесо) Фиг. 154. Силы, вызывающие торможение Такими механизмами прежде всего являются автоматически действующие тормоза (воздушные или электровоздушные), при помощи которых осуществляется быстрое замедление движения всего поезда (или одиночно следуемого локомотива). Имеются также и другие средства для замедления движения и остановки поезда — это ручные тормоза на подвижном составе, рекуперативное торможение на электровозах и контрпар на паровозах. Для того чтобы остановить или замедлить движение поезда, надо искусственно вызвать такие силы, которые были бы направлены против движения, против сил инерции. Это достигается прижатием специальных тормозных колодок к бандажам колёс. Чтобы разобраться в силах, непосредственно вызывающих торможение, будем относить наши рассуждения к одному из двух колёс, насаженных на ось. Явления торможения у второго колеса, а также у других колёсных пар будут аналогичными. Когда тормозная колодка прижимается к бандажу, катящегося по рельсам колеса (фиг. 154), между ними возникает сила трения скольжения. Эта сила вызывает равную себе со стороны рельса в точке опоры колеса горизонтальную реакцию, направленную в сторону, обратную движению. Горизонтальная реакция со стороны рельса на колесо, вызванная силой трения колодки о бандаж, и является тормозной силой, которая задерживает вращение колёс и в конце концов останавливает поезд. Если повышать силу нажатия тормозной колодки на бандаж,то сила трения скольжения между колодкой и бандажом будет повышаться, а вместе с ней повысится и величина горизонтальной реакции со стороны рельса на колесо. Эта реакция возникает в результате упора неровностей на поверхности бандажа в «бугорки» на поверхности рел
ьса. В
еличина силы трения между бандажом и тормозной колодкой равна произведению силы нажатия колодки на величину коэффициента трения, который с увеличением скорости уменьшается. При повышений силы трения между бандажом и колодкой она может срезать бугорки на поверхности рельса и колесо перестанет катиться по рельсу, а начнёт скользить по нему, как скользят санки по снегу. Сцепление колеса с рельсом нарушится, колесо заклинится и наступит явление скольжения, которое называют «юзом». В этом случае тормозная сила значительно уменьшается. Кроме того, на поверхности катания бандажа от стирания металла образуются площадки (ползуны), угрожающие безопасности движения. Отсюда следует, что если сила трения между бандажом и колодкой превысит силу сцепления колеса с рельсом, произойдёт заклинивание колеса. Чтобы ликвидировать начавшийся юз, нужно значительно уменьшить силу трения между бандажом и колодкой. Поэтому нельзя беспредельно увеличивать силу нажатия колодок на колёса. Она должна быть наибольшей (это позволит остановить поезд на возможно меньшем расстоянии), но ни в коем случае не должна превосходить силы сцепления колёс с рельсами (подобно тому, как нельзя увеличить силу тяги паровоза больше силы сцепления движущих колёс с рельсами, см. гл. VIII). Тормозная сила всего поезда складывается из тормозных сил, приложенных к тормозным колёсным парам. Во время нажатия и трения тормозных колодок о колёса движущегося поезда кинетическая энергия его переходит в тепловую энергию. Согласно известному закону физики на получение одной большой калории тепла необходимо затратить 427 кгм работы. Если кинетическая энергия поезда равна 80 000 000 кгм, то она эквивалентна (равнозначна) 188 000 килокалориям тепла. – Чтобы представить себе, как велики тепловые потери, связанные с поглощением тормозами кинетической энергии поезда, достаточно сказать, что этим количеством тепла можно было бы довести до кипения, т. е. до 100° около 1 880 л воды. Процесс торможения сопровождается разрушительной работой. В результате износа чугунных колодок при торможении рассеиваются в пыль сотни тысяч тонн чугуна. Вот почему такое большое значение приобретает проблема повышения износоустойчивости колодок и правильное пользование тормозами.

СИФОН

Образование тяги газов

Tagged Under :

Когда поезд идёт, например, по длинному спуску, нет нужды подавать пар в паровую машину паровоза, потому что и без пара он будет двигаться под действием составляющей силы тяжести, толкающей поезд вперёд. Для экономии пара машинист иногда закрывает регулятор и в других случаях. Чтобы при езде с закрытым регулятором, а также на стоянках можно было создать интенсивную тягу газов, в дымовой коробке размещается ещё один прибор, называемый сифоном. Сифон (фиг. 56) — это трубчатое кольцо, укрепляемое на’конусе на уровне верхней плоскости конусного насадка. По средней окружности кольца симметрично расположено несколько сопел с расширяющимися в сторону дымовой трубы каналами. Если через сифонное кольцо пропустить пар, то он устремится с большой скоростью сразу из всех сопел. Отдельные струи пара, соединяясь в один общий поток, заполняют дымовую трубу. Пар, вылетающий из сифона так же, как из конуса, увлекает за собой в атмосферу топочные газы, создавая разрежение в дымовой коробке и топке. Разница в работе конуса и сифона состоит в том, что конус действует отработавшим паром только при открытом регуляторе, тогда как сифон— паром, подводимым непосредственно из котла.
устройство паровоза
Фиг. 56. Сифон Для включения и выключения сифона в будке машиниста установлен специальный вентиль или рычаг. Сифонами машинисты пользуются не только во время стоянки паровоза, но и при езде с открытым регулятором. При малой скорости движения выхлопы отработавшего пара через конус очень редки. Поэтому тяга газов получается пульсирующей: то резко возрастает, то уменьшается. Если в этом случае пустить в действие сифон, то он будет способствовать выравниванию тяги газов, что особенно важно при отоплении слабоспекающимися углями и при тонком слое угля на колосниковой решётке. Совместное размещение конуса, сифона и дымовой трубы на паровозе видно на фиг. 12 (стр. 18).

Водоуспокоительная колодка

Питание котла и его арматура

Tagged Under :

Огневая коробка, как нам уже известно, снабжена несколькими циркуляционными трубами, которые при интенсивной работе паровоза создают возле лобового листа (т. е. как раз там, где размещено водоуказательное стекло) бурный выброс воды вверх (см. фиг. 68). Из-за этого видимый уровень воды искусственно повышается, хотя на самом деле её в котле не прибавилось. Если малоопытный машинист примет кажущийся уровень воды за действительный, над огневой коробкой может не оказаться минимального слоя воды. Чтобы знать действительный уровень воды в котле, водоуказательное стекло применяется в комбинации с так называемой водо-успокоительной колонкой (см. фиг. 70), устанавливаемой с правой •стороны лобового листа. Водоуспокоительная колонка как бы успокаивает, приводит в равновесие колебания уровня воды в котле. Колонка имеет форму цилиндра, поставленного вертикально и сообщающегося вверху с паровым пространством котла, а внизу — с водяным. Диаметр колонки намного больше диаметра нижнего штуцера, подводящего воду, поэтому колебания воды в котле поглощаются столбом воды в колонке. Кроме того, нижний штуцер колонки введён в котёл ниже выхода передних концов циркуляционных труб. А так как водоуказательное стекло установлено как раз на колонке, то показания его всегда, даже при наличии циркуляционных труб, соответствуют действительному уровню воды в котле.

СВОЙСТВО СМАЗКИ

Трение и борьба с ним

Tagged Under : , ,

Для смазывания трущихся частей паровоза употребляются масла с различными смазывающими свойствами. Это вызывается тем, что условия работы трущихся деталей неодинаковы. Например, цилиндры, поршни, золотники, сальники при работе паровоза соприкасаются с перегретым паром, имеющим температуру до 450°. Другие трущиеся детали, например, параллели, дышловые подшипники и шарнирные соединения, работают при невысокой температуре. Смазочные материалы имеют различные свойства. Одним из важнейших является вязкость. Вязкость (или тягучесть) зависит от сил сцепления между молекулами смазки. От величины вязкости зависит способность смазки образовывать сплошную масляную плёнку, сопротивляющуюся выдавливанию с трущихся поверхностей. Чем выше вязкость смазки, тем меньше она выдавливается трущимися поверхностями. С повышением температуры вязкость уменьшается, а с понижением возрастает. Чем меньше снижается вязкость масла при нагревании, тем лучше. Для смазки различных трущихся деталей паровоза подбирают масла соответствующей вязкости. Для смазывания цилиндров, золотников, параллелей, и некоторых других узлов трения применяется главным образом жидкая смазка. Для смазывания валиков рессорного подвешивания, опор топки: и других деталей паровозов некоторых серий применяется консистентная мазеобразная смазка. Для подшипников дышлового механизма с плавающими втулками применяют консистентную твёрдую смазку. На некоторых паровозах твёрдая смазка применяется в дышловых подшипниках без плавающих втулок, а также в буксах.

СИЛЫ СОПРОТИВЛЕНИЯ ДВИЖЕНИЮ ПОЕЗДА

Сила тяги паровоза

Tagged Under : , ,

Энергия пара расходуется на преодоление сил сопротивления движению поезда, всегда направленных в сторону, . противоположную его движению. При движении поезда по прямому горизонтальному пути с равномерной скоростью возникает сила сопротивления его движению, как результат воздействия на поезд воздушной среды, а также сил трения (трение между осями и подшипниками, трение бандажей о рельсы, удары на стыках и др.). Эти силы сопротивления постоянно действуют на поезд при его движении, поэтому их отно5-сят к основному сопротивлению. При высоких скоростях резко возрастает доля сопротивление движению, создаваемого воздействием воздушной среды, на движущееся тело, так называемое «воздушное сопротивление». [Наука, изучающая законы движения воздуха или газа и взаимодействие между телом и обтекающим его воздухом, называется аэродинамикой. Знание основных закономерностей аэродинамики позволяет конструкторам правильно решать вопросы, связанные с обтеканием тел воздухом (газом) при больших скоростях. Оказывается, что сила сопротивления воздушной среды движущемуся телу возрастает пропорционально квадрату скорости. Иными словами, если скорость увеличится в два раза, то воздушное сопротивление возрастёт в четыре раза, если же скорость увеличится в четыре раза, то воздушное сопротивление возрастёт в шест--надцать раз. С другой стороны, воздушное сопротивление во многом зависит от формы тела, двигающегося в воздушной среде. Так, например, оказывается, что падающая капля принимает такую форму, при которой наблюдается самое минимальное сопротивление. Вот почему конструкторы стремятся придать различным подвижным экипажам, самолётам, автомобилям, локомотивам и их частям формы, напоминающие форму падающей капли, или, как говорят, создать «обтекаемую форму». Так, паровозы, предназначенные для работы с большими скоростями (свыше 100 км/час), обшивают специальным кожухом, имеющим обтекаемые формы. Часто этот обтекаемый кожух называют «капотом». Кроме придания паровозу обтекаемой формы, капот прикрывает вращающиеся детали (колёса, дышла), что также уменьшает воздушное сопротивление. На фиг. 128 показан общий вид курьерского паровоза типа 2-3-2 постройки Коломенского завода, а на фиг. 129 — общий вид курьерского паровоза того же типа 2-3-2, но постройки Ворошиловград- _
устройство паровоза
Фиг. 128. Общий вид курьерского паровоза типа 2-3-2 постройки Коломенского завода ского завода. Как видно из фигур, обтекаемые формы капотов п'аровозов несколько отличаются друг от друга. Паровоз Ворошиловградского завода машинисты прозвали «сигарой». Ещё в 1938 г. известный испытатель локомотивов канд. тех. наук П. А. Гурский производил опыты по установлению влияния обтекаемого капота на уменьшение сопротивления паровоза при скоростях движения до 160—170 км/час. П. А. Гурскому удалось определить опытным путём затрату мощности на передвижение высокоскоростного паровоза типа 2-3-2 № 1 Коломенского завода в зависимости от скорости движения при оборудовании паровоза обтекаемым капотом и без него. Эти данные представлены на фиг. 130, из которой видно, что, например, при скорости 140 км/час на передвижение паровоза без капота надо затратить 1 080 л. с, а на передвижение того же паровоза, но в капоте — всего лишь 745 л. с, т. е. в данном случае от применения капота получено сокращение мощности на перемещение самого паровоза в 335 л. с; при скорости 160 км/час — экономия составляет 457 л. с. Эти цифры говорят о той пользе, которая получается от применения обтекаемых форм у паровоза при работе его с высокими скоростями. На фиг. 131 в качестве примера показан общий вид скоростного паровоза немецкой постройки. Когда же поезд движется по подъёму, проходит кривые или трогается с места, то кроме основных сил сопротивления появляются ещё дополнительные силы сопротивления его движению: сила сопротивления от подъёма, сила сопротивления от кривой, сила сопротивления при трогании с места.
устройство паровоза
Фиг. 129. Общий вид курьерского паровоза типа 2-3-2 ] постройки Ворошиловградского завода Почему возрастает сопротивление поезда при трогании его с места? Исследования показали, что во время стоянки подвижного состава смазка, находящаяся между подшипниками скольжения и шейками осей колёсных пар, выдавливается. Поэтому значительная часть работы силы тяги расходуется на преодоление полусухого трения межд

СЦЕПНЫЕ КОЛЁСНЫЕ ПАРЫ

Передача тяги на движущие колёса

Tagged Under : , , , ,

Паровоз строят с таким расчётом, чтобы нагрузка на рельс от колеса (в месте контакта его с рельсом) не превышала допускаемой. Чем ббльшая нагрузка приходится на рельсы, тем прочнее они должны быть. Иначе в рельсах могут возникнуть опасные напряжения. Напряжение в рельсе зависит также от расстояния между шпалами, скорости паровоза, качества балласта. Например, рельсы типа П-а допускают нагрузку от колёсной пары 18,5 т. Рельсы типа Р50 (1 пог. м таких рельсов весит 50 кг) допускают нагрузку 23 т. На наших железных дорогах уложены рельсы различных типов. Паровозы с нагрузкой на колёсную пару около 18 т могут проходить по любым участкам железнодорожного пути. Такой вездеходной машиной является, например, паровоз серии Л. Если бы полный вес паровоза был распределён только между одной ведущей колёсной парой и несколькими поддерживающими (не движущими), то наш паровоз не мог бы использовать полностью мощность паровой машины. Дело в том, что сила сцепления колёс с рельсами пропорциональна нагрузке. От силы сцепления прямо зависит и сила тяги паровоза: чем больше сила сцепления, тем больше сила тяги. Но так как нагрузку на рельс от ведущей’колёсной пары можно у1еличиватКь только до определённого предела, томила тяги такого паровоза была бы очень невелика. Для увеличения силы тяги паровоза без превышения допускаемой нагрузки на рельс нужно увеличить число движущих колесных пар которые бы подобно ведущей колёсной паре отталкива лись от рельсов и таким образом все вместе сообщали локомотиву поступательное движение. Фиг ПО. Схема распределения сцепного веса по всем колёсным парам Для этого ведущую колёсную пару соединяют (спаривают) с соседними колёсными парами; разумеется, тогда °^чи™ ™е £ приводящих паровоз в движение, увеличится. Такое спаривание осуществляется посредством дышел, которые в отличие от ведущего дышла называются сцепными. Таким образом, все спаренные (сцепные) колёсные пары, приводящие паровоз в движение, называются движущими, а одна из них, связанная ведущими дышлами с поршнями паровой машины, называется ведущей. На ведущую колёсную пару приходится примерно одна треть всех усилий, передаваемых от паровой машины на спаренные колёсные пары. Фиг. 111. Сцепные дышла: а — второе (центровое), б — первое Комплект движущих колёсных пар показан на фиг. 109. Вес паровоза, приходящийся на сцепные колёса, называют сцепным весом. Схема распределения сцепного веса по сцепным колёсным парам показана на фиг. 110. Здесь изображён паровоз,, который опирается на пять движущих колёсных пар и на бегунок. Современные паровозы имеют от трёх до пяти сцепных движущих колёсных пар. Например, грузовой паровоз серии Л имеет 5 движущих колёсных пар с нагрузкой на рельс от каждой 18,2 т. Значит, сцепной вес паровоза серии Л равен 18,2×5 = 91 т. Так как каждое сцепное дышло связывает пару соседних колёс, то число их с каждой стороны паровоза на единицу меньше числа сцепных колёс. По своей конструкции сцепные дышла сходны с ведущим дышлом. На фиг. 111 изображены второе и первое’ сцепные дышла (считая от цилиндров паровой машины).
устройство паровоза

устройство паровоза

устройство паровоза
Второе сцепное дышло (фиг. 111, а) имеет две головки с плавающими втулками и два хвостовика. Эти хвостовики входят в проушины (вилки) соседних дышел; соединение проушин с хвостовиками осуществляется при помощи валиков, называемых дышловыми. Передняя головка второго сцепного дышла пассажирского паровоза типа 2-4-2 оборудована двумя роликоподшипниками с короткими цилиндрическими роликами. Сцепные дышла навешиваются на пальцы кривошипов сцепных колёсных пар. Сцепные колёсные пары устроены аналогично ведущей колёсной паре, но они не имеют контркривошипов. Есть и ещё одно отличие их от ведущих. Ведущая колёсная пара приводится во вращение непосредственно ведущим дышлом и поэтому она работает в более тяжёлых условиях, чем сцепные. Чтобы облегчить прохождение кривых участков пути (если это требуется для данного локомотива), бандажи ведущей колёсной пары современных паровозов обычно делаются без гребней (рекорд). Остальные движущие колёсные пары, как правило, делаются с ребордами. Реборды, расположенные с внутренней стороны бандажей, предотвращают сход паровоза с рельсов. Чтобы реборды не тёрлись о рельсы во время движения по прямым участкам пути
, рабочая поверхно