КУЛИСА И ПЕРЕВОДНОЙ МЕХАНИЗМ

Подача пара из котла в паровую машину

Tagged Under : , , , , , , ,

Если паровозу нужно двигаться только вперёд, то рассмотренный нами парораспределительный механизм вполне удовлетворяет этому требованию. Однако паровоз должен иметь возможность двигаться как вперёд, так и назад. Направление движения паровоза зависит от того, в каком положении находится кривошип и в какую из полостей цилиндра — заднюю или переднюю — первоначально будет впущен пар. Если кривошип находится в верхней половине колеса, то для движения паровоза вперёд пар нужно впустить в заднюю полость цилиндра, а для движения назад — в переднюю. 1 Впуск пара в цилиндры паровой машины и выпуск его, как указывалось, производятся через одни и те же окна. Если же кривошип находится в нижней половине колеса, то для движения паровоза вперёд пар нужно впустить в переднюю полость, а для движения назад — в заднюю полость цилиндра. Чтобы изменить направление движения паровоза, нужно так поставить золотник, чтобы он осуществлял впуск пара в нужную полость цилиндра, т. е. надо иметь возможность изменять направление движения золотника. Это осуществляется с помощью кулисы (фиг. 93). Кулиса представляет стальную поковку, в середине которой имеется прорезь, расположенная по дуге. Радиус этой дуги цапфа-равен длине золотниковой тяги. В прорезь, поверхности которой гладко вРнцлисе обработаны, вставляется особая деталь, на Зля камня зываемая камнем. Камень может сколь- клапан тое зить внутри прорези. Сама кулиса укреп- вой смазки ляется в подшипниках и может качаться на цапфах относительно определённого центра. До сих пор рассматривался случай, когда золотник приводился в движение золотниковой тягой непосредственно от золотникового кривошипа (контркривошипа). А что получится, если мы «разрежем» золотниковую тягу и в месте разреза (примерно посередине) шариирно укрепим кулису (фиг. 94). Чтобы контркривошип мог теперь передавать движение золотнику, соединим его с хвостовиком (нижней частью) кулисы тягой,
устройство паровоза

устройство паровоза
называемой кулисной, а камень кулисы с золотником — тягой, называемой золотниковой. Теперь в работе нашего механизма примут участие новые детали-посредники — кулиса и её камень. Если машинист опустит камень ниже центра кулисы, то движение контркривошипа будет передаваться через кулису золотнику в том же направлении, как и в случае, рассмотренном на фиг. 92, т. е. золотник откроет окно для впуска пара в заднюю полость цилиндра и паровоз будет двигаться вперёд. Если же машинист поднимет камень кулисы вверх, выше центра кулисы, то золотник при этом передвинется, открыв окно для впуска пара в переднюю полость, и тогда паровоз будет двигаться назад. Остаётся сделать так, чтобы можно было перемещать камень в кулисе на стоянке и на ходу паровоза. Для этого служит переводной механизм. Он состоит из переводного винта, тяг и рычажной передачи. Посмотрите на фиг. 94. Золотниковая тяга подвеской соединена с двуплечим рычагом, насаженным на переводной вал. Верхнее плечо рычага соединено длинной тягой с переводным рычагом (реверсом), находящимся в будке машиниста. Когда машинист переводит рукоятку реверса вперёд, он заставляет кулисный камень опускаться, когда он переводит рукоятку назад, — камень поднимается. В современных паровозах для перемещения камня кулисы, а следовательно, для изменения направления движения паровоза применяется механизм, действующий сжатым воздухом. Обязанность машиниста сводится к тому, чтобы переставить переводной рычаг по сектору в переднее или заднее положение, которое соответствует переднему или заднему ходу. Перемещение кулисного камня выполняется автоматически благодаря особому механизму — сервомотору, установленному между переводным рычагом и кулисой. Сервомотор (фиг. 95) состоит из цилиндра с поршнем (шток которого соединён с рычагом переводного вала) и распределительной голоеки. Золотник распределительной головки изменяет приток сжатого Еоздуха в цилиндр сервомотора; он связан с переводным рычагом, расположенным в будке машиниста, длинной тягой. Когда машинист переместит переводной рычаг вперёд или назад в требуемое положение, длинная тяга увлечёт за собой рычаг /, который, поворачиваясь вокруг точки А, повернёт золотник в распределительной головке. Перемещаясь, золотник откроет доступ сжатому воздуху в одну из полостей цилиндра сервомотора и выпустит воздух из другой полости. В рез
ультате порш

СЦЕПНЫЕ КОЛЁСНЫЕ ПАРЫ

Передача тяги на движущие колёса

Tagged Under : , , , ,

Паровоз строят с таким расчётом, чтобы нагрузка на рельс от колеса (в месте контакта его с рельсом) не превышала допускаемой. Чем ббльшая нагрузка приходится на рельсы, тем прочнее они должны быть. Иначе в рельсах могут возникнуть опасные напряжения. Напряжение в рельсе зависит также от расстояния между шпалами, скорости паровоза, качества балласта. Например, рельсы типа П-а допускают нагрузку от колёсной пары 18,5 т. Рельсы типа Р50 (1 пог. м таких рельсов весит 50 кг) допускают нагрузку 23 т. На наших железных дорогах уложены рельсы различных типов. Паровозы с нагрузкой на колёсную пару около 18 т могут проходить по любым участкам железнодорожного пути. Такой вездеходной машиной является, например, паровоз серии Л. Если бы полный вес паровоза был распределён только между одной ведущей колёсной парой и несколькими поддерживающими (не движущими), то наш паровоз не мог бы использовать полностью мощность паровой машины. Дело в том, что сила сцепления колёс с рельсами пропорциональна нагрузке. От силы сцепления прямо зависит и сила тяги паровоза: чем больше сила сцепления, тем больше сила тяги. Но так как нагрузку на рельс от ведущей’колёсной пары можно у1еличиватКь только до определённого предела, томила тяги такого паровоза была бы очень невелика. Для увеличения силы тяги паровоза без превышения допускаемой нагрузки на рельс нужно увеличить число движущих колесных пар которые бы подобно ведущей колёсной паре отталкива лись от рельсов и таким образом все вместе сообщали локомотиву поступательное движение. Фиг ПО. Схема распределения сцепного веса по всем колёсным парам Для этого ведущую колёсную пару соединяют (спаривают) с соседними колёсными парами; разумеется, тогда °^чи™ ™е £ приводящих паровоз в движение, увеличится. Такое спаривание осуществляется посредством дышел, которые в отличие от ведущего дышла называются сцепными. Таким образом, все спаренные (сцепные) колёсные пары, приводящие паровоз в движение, называются движущими, а одна из них, связанная ведущими дышлами с поршнями паровой машины, называется ведущей. На ведущую колёсную пару приходится примерно одна треть всех усилий, передаваемых от паровой машины на спаренные колёсные пары. Фиг. 111. Сцепные дышла: а — второе (центровое), б — первое Комплект движущих колёсных пар показан на фиг. 109. Вес паровоза, приходящийся на сцепные колёса, называют сцепным весом. Схема распределения сцепного веса по сцепным колёсным парам показана на фиг. 110. Здесь изображён паровоз,, который опирается на пять движущих колёсных пар и на бегунок. Современные паровозы имеют от трёх до пяти сцепных движущих колёсных пар. Например, грузовой паровоз серии Л имеет 5 движущих колёсных пар с нагрузкой на рельс от каждой 18,2 т. Значит, сцепной вес паровоза серии Л равен 18,2×5 = 91 т. Так как каждое сцепное дышло связывает пару соседних колёс, то число их с каждой стороны паровоза на единицу меньше числа сцепных колёс. По своей конструкции сцепные дышла сходны с ведущим дышлом. На фиг. 111 изображены второе и первое’ сцепные дышла (считая от цилиндров паровой машины).
устройство паровоза

устройство паровоза

устройство паровоза
Второе сцепное дышло (фиг. 111, а) имеет две головки с плавающими втулками и два хвостовика. Эти хвостовики входят в проушины (вилки) соседних дышел; соединение проушин с хвостовиками осуществляется при помощи валиков, называемых дышловыми. Передняя головка второго сцепного дышла пассажирского паровоза типа 2-4-2 оборудована двумя роликоподшипниками с короткими цилиндрическими роликами. Сцепные дышла навешиваются на пальцы кривошипов сцепных колёсных пар. Сцепные колёсные пары устроены аналогично ведущей колёсной паре, но они не имеют контркривошипов. Есть и ещё одно отличие их от ведущих. Ведущая колёсная пара приводится во вращение непосредственно ведущим дышлом и поэтому она работает в более тяжёлых условиях, чем сцепные. Чтобы облегчить прохождение кривых участков пути (если это требуется для данного локомотива), бандажи ведущей колёсной пары современных паровозов обычно делаются без гребней (рекорд). Остальные движущие колёсные пары, как правило, делаются с ребордами. Реборды, расположенные с внутренней стороны бандажей, предотвращают сход паровоза с рельсов. Чтобы реборды не тёрлись о рельсы во время движения по прямым участкам пути
, рабочая поверхно

РАБОТА И МОЩНОСТЬ ПАРОВОЙ МАШИНЫ

Передача тяги на движущие колёса

Tagged Under : , , , , , , , , ,

Меняющееся давление пара в каждой полости цилиндра «в зависимости от положения поршня можно определить прибором, называемым индикатором. Рассмотрим его устройство и действие на упрощённой схеме (фиг. 99). В крышке парового цилиндра просверлено небольшое отверстие, к которому присоединена трубка. Внутри трубки помещены карандаш поршенёк со штоком и пру-
устройство паровоза
жинка. На конце штока укреплён пишущий наконечник (карандаш), упирающийся своим остриём в полоску бумаги. С помощью рычага бумага приводится в движение от поршня. Если в полость, к которой присоединён индикатор, впустить пар, давление внутри трубки прибора будет равно давлению пара внутри цилиндра (см. фиг. 99, левая полость цилиндра). Фиг.-99.^Упрощённая схема инди- При изменении давления катора карандаш будет пропорцио- нально этому давлению двигаться по бумаге вверх или вниз, а бумага в зависимости от движения поршня будет двигаться вправо или влево. В результате сложения этих движений карандаш вычертит на бумаге замкнутую диаграмму зависимости давления в цилиндре паровой машины от хода поршня. Такая диаграмма называется индикаторной. Она позволяет судить о правильности протекания каждого рабочего процесса, с которыми мы уже познакомились в предыдущей главе. Перед тем как снять индикаторную диаграмму, на бумаге .(в современных индикаторах бумажная лента накручивается на вращающийся барабан, связанный с поршнем специальным ходо-уменьшителем) проводится так называемая атмосферная линия (см. пунктирную линию на фиг. 99). Как показывает само название, атмосферная линия изображает давление окружающей среды. Любая вертикальная линия, проведённая в пределах контура диаграммы, будет соответствовать давлению пара при определённом положении поршня, а горизонтальная — объёму цилиндра или расстоянию, на которое перемещается поршень. На фиг. 100 показаны характерные для паровозной машины индикаторные диаграммы для передней и задней полостей одного цилиндра. В исправной машине с точным парораспределением обе диаграммы должны быть одинаковыми. На индикаторных диаграммах, изображённых на фиг. 100, довольно чётко видны все шесть периодов парораспределения: от точки 6 до точки / происходит предварение впуска, от точки 1 до точки 2 — впуск пара, от точки 2 до точки 3 — расширение, от точки 3 до точки 4 — предварение выпуска, от точки 4 до точки 5— выталкивание и от точки 5 до точки 6— сжатие пара. Площадь индикаторной диаграммы, очерченная карандашом индикатора, выражает в определённом масштабе не что иное, как работу пара, которую он совершает в цилиндре при движении поршня в одну сторону. Но так как паровая машина паровоза — машина двойного действия, то очевидно, что такую же работу произведёт пар, впущенный и в другую полость цилиндра. Следовательно, полная работа пара за два хода поршня будет равна сумме площадей индикаторных диаграмм каждой полости. Во время перемещения поршня давление пара в рабочей полости цилиндра изменяется от максимума до минимума, поэтому работу пара в цилиндрах подсчитывают по средней величине его давления за весь ход поршня. Это давление, величина которого условно принята постоянной, называется средним индикаторным давлением. Оно будет тем больше, чем больше степень наполнения (отсечка)
устройство паровоза
цилиндра, и тем меньше, чем меньше отсечка при одной и той же скорости. Иными словами, среднее индикаторное давление будет зависеть от продолжительности впуска. Если среднее индикаторное давление умножить на площадь поршня, то получим среднюю силу, приложенную к поршню. Если теперь эту силу умножить на расстояние, проходимое поршнем, то найдём работу, которую совершит пар, действующий на поршень за один его ход в одной полости цилиндра. Очевидно, что работа пара в обоих цилиндрах паровой машины будет вчетверо больше (пар действует в обеих полостях цилиндра, а цилиндров у паровоза обычно два). Поясним это примером. Пусть среднее индикаторное давление равно 8,5 кг/см*, а площадь поршня 3 416,6 см2. Тогда сила давления на поршень (средняя) определится так: 8,5 X 3 416,6 = 29041 кг. Пусть ход поршня равен 80 см, или 0,8 м. Работа, которую произведёт пар при движении поршня из одного крайнего положения в другое, будет равна произведению силы на путь её действия, т. е. на ход поршня: 29 041 х 0,8 = 23 232,8 кгм. За два хода поршня работа будет в два раза больше, т. е. 23 232,8 х 2 = 46 465,6 кгм. В двух цилин
драх работа

ОГРАНИЧЕНИЕ СИЛЫ ТЯГИ ПО МАШИНЕ

Сила тяги паровоза

Tagged Under : , , ,

Если бы конструкторы спроектировали паровоз с большой силой тяги по сцепному весу и по котлу, но со слабой машиной, то такой паровоз оказался бы крайне неудачным. Он не смог бы реализовать наибольшие значения силы тяги по котлу и сцеплению из-за непреодолимого «барьера», создаваемого слабой паровой машиной. Избыток силы тяги по котлу и по сцепному весу оказался бы «мёртвым грузом», так как не оправдывался бы размерами паровой машины. Недостаточная мощность паровой машины по сравнению с мощным паровым котлом и большим сцепным весом паровоза не позволила бы такому паровозу развить силу тяги больше некоторой определённой величины, ограниченной размерами машины. Вот почему при расчёте основных размеров паровоза инженеры стараются выбрать такой вариант решения, который равным образом обеспечивал бы одновременную реализацию высокой силы тяги по сцеплению, силы тяги по котлу и силы тяги по машине (всех вместе). С помощью увеличителя сцепного веса на некоторых паровозах становится возможным привести в соответствие недостаточный сцепной вес с относительно мощным котлом и машиной. ГРАФИК СИЛЫ ТЯГИ Чтобы нагляднее представлять себе одновременно величины силы тяги по сцепному весу, котлу и машине в зависимости от скорости, пользуются так называемыми тяговыми характеристиками паровоза (графиками сил тяги). На таком графике (фиг. 134) нанесены кривые изменения силы тяги в зависимости от скорости для различных значений форси-ровок и отсечек. Из фиг. 134 видно, что чем выше форсировка при одной и той же скорости, тем больше сила тяги, но она не может быть выше силы тяги по сцеплению. Например, пользуясь графиком фиг. 134, можно определить, что при форсировке 70 кг/м2час и отсечке 0,6 паровозом может быть реализована сила тяги 20 200 кг. Скорость паровоза при этом будет 23,5 км/час. При той же форсировке, но при отсечке 0,4 сила тяги упадёт до 11 500 кг, но скорость паровоза увеличится до 50 км/час. Таким образом, пользуясь этим графиком, мы можем определить силу тяги паровоза, а следовательно, и вес поезда при различных режимах работы паровоза и его скорости. Кроме указанных графиков, строятся также графики и для определения расхода пара и топлива на единицу мощности в зависимости от различных режимов работы паровоза. Эти графики известны под названием расходных характеристик. Тяговые и расходные графики получаются в результате специальных испытаний паровозов. По ним судят о конструктивных и эксплуатационных качествах данного паровоза, сравнивают его с другими паровозами. Поэтому указанные графики часто называют паспортными характеристиками, а книжки, в которых они помещены, — паспортами паровозов.
устройство паровоза