ПАРОВОЗ С ТЕНДЕРОМ-КОНДЕНСАТОРОМ И НЕКОТОРЫЕ ОПЫТНЫЕ ЛОКОМОТИВЫ

КПД паровоза

Tagged Under : , , , , , , ,

Если до сих пор не удалось создать удачной конструкции воздухоподогревателя, то становится понятным, почему так трудно создать паровоз, в котором были бы воплощены и другие новейшие достижения стационарной теплотехники (высокое давление пара, вакуумная конденсация, пылеугольиое отопление и др.). В решении проблемы повышения экономичности паровоза большое ^значение имели работы нашего соотечественника академика С. П. Сыромятникова. Созданная С. П. Сыромяти и ковым теория теплового процесса помогла ему найти оригинальное решение вопроса о снижении веса паровозного котла, что дало возможность устанавливать различные устройства, повышающие мощность и экономичность паровоза. «Тщательные расчёты показывают, — писал академик Сыромятников, — что передняя половина трубчатой части паровозного котла даёт не более 14—15% общего количества пара, производимого паровозным котлом. Это значит, что мы возим на паровозе громадный мёртвый вес в виде большой, громоздкой и тяжеловесной поверхности нагрева, с которой снимаем очень мало пара. Если упразднить неэффективную переднюю половину трубчатой части котла, то мы освободим место на паровозе и создадим резервы, которые позволят выиграть гораздо больше, чем потерянные при этом 14—15% пара». Несколько лет назад по предложению акад. С. П. Сыромятникова группа научных работников и инженеров Московского электромеханического института инженеров железнодорожного транспорта им. Ф. Э. Дзержинского разработала технический проект такого паровоза типа 1-5-1 со значительно укороченной (вместо обычных 6 м) трубчатой частью, т. е. фактически с новой схемой парового котла. Правильность технических расчётов проверялась и подтверждалась многочисленными испытаниями на разнообразных стендах и моделях. Опыты показали, что расположенный в специальной камере (фиг. 145) так называемый выносной перекрёстноточный пароперегреватель (предложенный проф. Н. И. Белоконь в 1938 г.) способен перегревать пар до 530°, водоподогреватель обеспечивает подогрев воды до 80—90°, а температура воздуха, подводимого в топку, достигает 200—220°. Опытный паровоз по предложению акад. Сыромятникова (фит. 145 и 146) был построен Ворошиловградским паровозостроительным заводом им. Октябрьской революции. # * * Подсчитано, что если кусок каменного угля весом 1 кг превратить в пыль, то общая его поверхность, соприкасающаяся с воздухом, поступающим в топку, возрастёт в 50 000 раз, и все частицы угля будут сгорать полностью в одинаковых условиях. Поэтому обычные потери тепла от провала и уноса угля должны резко снизиться. Подсчёты показывают, что сжигание угля в виде пыли позволяет значительно увеличить к. п. д. котла Советские инженеры провели многочисленные опыты по использованию пылевидного топлива на паровозах и добились в этой области зам^™ успехов. Однако многие вопросы еще не решены.
устройство паровоза
Фиг. 145. Общий вид паровоза, предложенного С. П. Сыромятниковым Главное осложнение состоит в том, что в обычной топке паровоза сравнительно небольшого объёма задняя трубная решётка при отоплении уголы-гой пылью очень быстро (примерно в течение часа) залепляется золой и шлаком. Чем же это вызывается? В обычной паровозной топке слой твёрдого топлива сжигается на колосниковой решётке. Образующиеся при этом зола и шлак периодически удаляются из зольника. Иначе обстоит дело в паровозах с пылеугольным отоплением. Здесь никакого слоя топлива нет, так как сгорание мельчайших частиц угля происходит на лету, в пространстве топки. Сгорание происходит при очень высокой температуре. Зола, образующаяся при сжигании пыли на лету, из-за высокой температуры плавится и, оседая на менее нагретой задней решётке и на трубах, спекается (шлакуется), быстро забивая их. Каким же образо.м использовать высокую температуру сгорания пыли и в то же время снизить температуру перед трубнойрешёткой, не допуская её зашлаковывания? Конструкторы увеличили объём топки за счёт использования объёма зольника, надобность в котором при пылеугольном отоплении отпала, и заставили сгорать угольную пыль не перед трубной решёткой, а в месте расположения бывшего зольника, превратив его в камеру горения (фиг. 147). Чтобы не допустить внешнего охлаждения, её стенки обмуровываются огнеупорным кирпичом. Такая
устройство паровоза
Фиг. 146. Схема паровоза- предложенного С. П. Сыромятниковым кладка способст

ПРИНЦИП ДЕЙСТВИЯ ПНЕВМАТИЧЕСКИХ АВТОТОРМОЗОВ

Автотормоза

Tagged Under : , , , , ,

Для приготовления сжатого воздуха на каждом паровозе ставится насос (фиг. 156), приводимый в действие паром из котла. Пуск насоса осуществляется вручную (открытием парозапорного 14*
устройство паровоза
вентиля), но вся его дальнейшая работа протекает автоматически: специальный регулятор давления останавливает насос, если давление сжатого воздуха достигает заданной величины (обычно 8— 9 am), и снова пускает его в ход, когда давление снизится на 0,2—0,3 am, т. е. на величину чувствительности работы регулятора давления. Современный паро-воздушный компаунд-насос нагнетает в одну минуту до 3 ООО л атмосферного воздуха. Сжатый воздух, нагнетаемый насосом, подводится в место его накопления — в главный воздушный резервуар. Обычно на паровозе устанавливаются два соединённых воздухопроводом главных воздушных резервуара общей ёмкостью от 900 до 1 ООО л. Из главного воздушного резервуара сжатый воздух подаётся к крану машиниста и отсюда в длинный, уложенный вдоль всего поезда, воздухопровод (тормозную магистраль), а от него через воздухораспределители •— в запасные резервуары. Кран машиниста предназначен для управления давлением воздуха в магистрали, т. е. для управления автотормозами. Между паровозом, тендером и вагонами магистраль соединяется резиновыми соединительными рукавами. Под каждым паровозом и тормозным вагоном находятся запасные резервуары, тормозные цилиндры и воздухораспределители. Воздухораспределитель — сердце тормоза — распределяет сжатый воздух между магистралью, запасным резервуаром и тормозным цилиндром. Иными словами, тормозной цилиндр прямого сообщения с тормозной магистралью не имеет. При таком устройстве воздухораспределитель в одном случае сообщает магистраль с запасным резервуаром и тогда последний наполняется (заряжается) сжатым воздухом из магистрали (в этом случае тормозной цилиндр через воздухораспределитель сообщён с атмосферой), а в другом случае устанавливает прямое сообщение между запасным резервуаром и тормозным цилиндром и тогда последний наполняется сжатым воздухом из запасного резервуара. В процессе поступления в тормозной цилиндр сжатый воздух перемещает поршень со штоком, а вместе с ним и рычажную передачу, с помощью которой тормозные колодки прижимаются к колёсам. Чтобы представить действие автоматических тормозов, проследим за чередованием важнейших процессов (зарядки, торможения и отпуска), происходящих при управлении тормозами (см. фиг. 156). Зарядка. Перед отправлением поезда тормоз заряжается или, как принято говорить, производится зарядка тормозов. Зарядка тормозов заключается в наполнении магистрали и запасных резервуаров сжатым воздухом из главного резервуара паровоза. Для зарядки нужно повернуть рукоятку крана машиниста в положение (первое), при котором главный резервуар получит сообщение с тормозной магистралью поезда (фиг. 156, а).
устройство паровоза
Зарядка считается оконченной, когда давление в магистрали и запасных резервуарах достигнет установленной величины (для грузовых поездов 5,3—5,5 am и пассажирских 5,0—5,2 am). Это давление устанавливается краном машиниста и контролируется по манометру. После того как давление в магистрали достигает указанных величин, рукоятку крана машиниста переводят в следующее положение, называемое поездным, при котором указанное давление поддерживается автоматически, независимо от утечек. При зарядке давление сжатого воздуха в магистрали повышается; части (внутренние органы) воздухораспределителя устанавливаются в такое положение, при котором воздух из магистрали направляется в запасный резервуар. В тормозной цилиндр сжатый, воздух при этом пройти не может, цилиндр остаётся сообщённым с атмосферой, и тормозные колодки, как это видно из фиг. 156, а, не прижимаются к колёсам. Торможение. Для торможения необходимо, чтобы воздух из запасного резервуара был выпущен в тормозной цилиндр, который предварительно должен быть изолирован от атмосферы. Это достигается тем, что машинист, ставя рукоятку крана машиниста в тормозное положение, выпускает часть воздуха из тормозной магистрали в атмосферу. При некотором снижении давления в магистрали воздухораспределитель приходит в действие и его части устанавливаются в такое положение, при котором запасный резервуар соединяется с тормозным цилиндром и разобщается с магистралью, как показано на фиг. 156, б. Тогда
под напором
сжатого воздуха, перетекающего из запасного резервуара в тормозной цилиндр, поршень последнего будет перемещаться вместе со штоком и, воздействуя на рычажную передачу, прижмёт тормозные колодки к бандажам колёс. В зависимости от силы нажатия колодок поезд или остановится или скорость его уменьшится. Чтобы ещё раз понизить давление в магистрали, нужно повернуть рукоятку крана машиниста в положение, при котором магистраль снова соединяется с атмосферой. Разумеется, что в этом случае давление в магистрали понизится, воздухораспределитель вновь сообщит запасный резервуар с тормозным цилиндром и тормозные колодки с помощью рычажной передачи с большей силой прижмутся к колёсам. Схема расположения и подвески тормозных колодок на паровозе показана на фиг. 157. Отпуск. Получив нужную степень торможения, машинист выключает тормоза или, как говорят железнодорожники, производит отпуск тормозов. Для этого он с помощью крана машиниста соединяет главный резервуар с магистралью (см. фиг. 156, а). Впуск сжатого воздуха в магистраль сопровождается повышением давления в ней до установленного. После этого рукоятка крана машиниста переводится в поездное положение, при котором давление в магистрали в дальнейшем автоматически поддерживается 5—5,2 или 5,3—5,5 am. При этом части воздухораспределителя устанавливаются в первоначальное положение, т. е. выпускают сжатый воздух из тормозных цилиндров в атмосферу и одновременно наполняют запасные резервуары сжатым воздухом из магистрали. Тормоз вновь готов (заряжен) для следующего торможения. Итак, понижение давления воздуха в магистрали вызывает торможение поезда, а повышение давления — отпуск тормозов. Наполнение сжатым воздухом тормозных цилиндров происходит из запасных резервуаров,предварительно заряженных до давления 5—5,2или 5,3—5,5 am в зависимости от рода поезда — пассажирский или грузовой. В этом и заключается общий принцип действия всех автоматических воздушных тормозов, применяемых на железнодорожном транспорте. Хотя рассмотренный нами тип тормоза является автоматическим, но он непрямодействующий (истощимый). Это значит, что при длительном торможении запас сжатого воздуха (в запасном резервуаре) может истощиться: в процессе торможения запасный резервуар воздухораспределителем разобщён с магистралью, а магистраль краном машиниста разобщена с главным резервуаром. Поэтому воздух в тормозной цилиндр может поступать только из запасного резервуара, объём которого ограничен, и утечки воздуха восполняться не будут. Вследствие этого давление в тормозных цилиндрах, а значит, и тормозная сила поезда, постепенно уменьшатся. Чтобы вновь восстановить высокое давление воздуха в тормозном цилиндре, необходимо сообщить магистраль с главным и запасными резервуарами. Для этого машинист должен произвести отпуск и зарядку тормоза. Лишь после такой перезарядки можно снова начинать торможение. На это требуется затратить некоторое время, потеря которого при торможении, особенно на спусках, весьма опасна, а иногда и вовсе недопустима. Таким образом, главным недостатком непрямодействующего автоматического тормоза является его истощимость.
устройство паровоза
Автоматическим тормозам системы Матросова и Казанцева не присуща истощимость. Воздухораспределители советских тормозов так устроены, что при недостатке воздуха в запасных резервуарах они пополняются из магистрали, которая в свою очередь получает воздух из главного резервуара паровоза через кран машиниста. Таким образом, при любых условиях запасные резервуары всегда обеспечены нужным количеством сжатого воздуха. Тормоза системы Матросова и Казанцева являются неистощимыми, поэтому они называются прямодействующими автоматическими тормозами. Лучший из них тормоз Матросова в 1930 г. принят типовым для грузового подвижного состава железных дорог СССР. С 1953 г. подвижной состав оборудуется тормозом Матросова (МТЗ-135), который наряду с указанными достоинствами обладает также лёгким отпуском, более быстрым наполнением тормозных цилиндров и наличием ускорителей для экстренного торможения. . Отпуск тормозов называется лёгким потому, что тормозные колодки в длинносоставном поезде отходят от бандажей в течение 40—50 сек. вместо 2—3 мин. при старом тормозе. Быстрое наполнение тормозных цилиндров обеспечивает значительное сокращение тормозных путей.

РЕДСТВА, УЛУЧШАЮЩИЕ КАЧЕСТВО ПАРА

Горение и парообразование

Tagged Under : , , , ,

Котлы паровозов питаются водой из рек, озёр, артезианских •скважин и искусственных водохранилищ. Воды этих источников содержат разнообразные примеси (частицы глины, песка, газы и растворённые соли). В среднем одна тонна природной воды содержит 300—500 г примесей. Состав и количество этих примесей неодинаковы для источников водоснабжения различных районов. Так, например, воды Донбасса особенно богаты солями, а воды многих источников водоснабжения Северного Кавказа отличаются присутствием в них большого количества щелочей. Органические вещества преобладают в водоёмах, питающихся болотными торфяными водами. Если питательная вода не подвергается специальной обработке, то, попадая в котёл паровоза, она приносите собой много различных примесей в растворённом виде или в виде взвешенных частиц. При испарении воды в котле количество примесей возрастает в несколько -раз. Если котловая вода загрязнена незначительно, то пузырьки пара, образующиеся при кипении, достигая её поверхности, мгновенно лопаются. Если же котловая вода сильно загрязнена, то парообразование ухудшается, так как процесс разрушения пузырьков пара при выходе их в паровой объём замедляется. Это происходит потому, что примеси, содержащиеся в воде, делают плёнку пузырьков более прочной. «Срок жизни» пузырьков пара в этом случае удлиняется. Это приводит к тому, что поступающие на поверхность воды новые пузырьки наслаиваются на пузырьки, не успевшие разорваться. Многослойная масса пузырьков представляет собой пену, которая накапливается под свободной поверхностью воды и поднимает эту поверхность. При этом объём парового пространства уменьшается и пар, захватывая с собой пену, загрязняется солями, механическими примесями, делается более влажным. Для вод с высоким содержанием солей, наряду со вспениванием, »в котле наблюдаются и случаи бросания, заключающиеся в мгновенных выбросах значительного количества воды вместе с паром в пароперегреватель и даже в паровую машину. Это явление большей частью имеет место при резком открытии регулятора. На фиг. 48 изображён «бросок» воды в котле при резком открытии регулятора. При «броске» воды влажность пара может увеличиться: во много раз. Выше указывалось, что унос влаги из котла снижает температуру перегрева пара. Падение температуры перегретого пара на 10е вызывает пережог топлива паровозом примерно на 1%, что снижает его экономичность и приводит к перерасходу до 1,5% воды. Но это не всё. При испарении влаги в пароперегревателе примеси,, содержащиеся в ней, осаждаются на стенках трубок элементов. От*
устройство паровоза
Фиг. 48. «Бросок» воды в котле при резком открытии регулятора этого сечение трубок уменьшается; передача тепла от стенок трубок к пару ухудшается, а стенки трубок перегреваются и прогорают. Ещё недавно только из-за накипи, образующейся в трубках элементов, потери топлива на сети дорог достигали 600 тыс. твгод. Из этого видно, как сильно влияет унос влаги из котла на расхож топлива. Часть примесей в виде мелких частиц уносится паровым потоком в цилиндры паровой машины, что приводит к усиленному износу трущихся частей и образованию твёрдого нагара. Во время работы котла примеси осаждаются на стенках топки,, жаровых и дымогарных труб в виде накипи или шлама. Теплопроводность стенок, покрытых накипью, уменьшается. От этого парообразование ухудшается. Таким образом, нормальная эксплуатация паровоза при плохом качестве пара сильно осложняется, а в отдельных случаях может произойти поломка деталей движущего и парораспределительного механизмов. Вопросы борьбы за качество пара, которое зависит от его влажности и содержания солей, уносимых из котловой воды в процессе парообразования, приобрели особое значение при вождении: тяжеловесных поездов на высоких скоростях, когда съём пара ■ с каждого квадратного метра поверхности нагрева значительно возрастает. До последнего времени самым распространённым способом борьбы с влажностью пара был способ механического отделения влаги от парового потока на его пути к пароперегревателю. Для этого применялся простой прибор, известный под названием паросушителя. Устройство его основано на использовании лабиринта перегородок, через которые пропускался пар ■ (фиг. 49). При резких поворотах (на 180°) капельки воды, обладающие значительно большим весом по сравнению с частицами пара, отбрасываются силами инерции на стенки прибора и возвращаютс

КУЛИСА И ПЕРЕВОДНОЙ МЕХАНИЗМ

Подача пара из котла в паровую машину

Tagged Under : , , , , , , ,

Если паровозу нужно двигаться только вперёд, то рассмотренный нами парораспределительный механизм вполне удовлетворяет этому требованию. Однако паровоз должен иметь возможность двигаться как вперёд, так и назад. Направление движения паровоза зависит от того, в каком положении находится кривошип и в какую из полостей цилиндра — заднюю или переднюю — первоначально будет впущен пар. Если кривошип находится в верхней половине колеса, то для движения паровоза вперёд пар нужно впустить в заднюю полость цилиндра, а для движения назад — в переднюю. 1 Впуск пара в цилиндры паровой машины и выпуск его, как указывалось, производятся через одни и те же окна. Если же кривошип находится в нижней половине колеса, то для движения паровоза вперёд пар нужно впустить в переднюю полость, а для движения назад — в заднюю полость цилиндра. Чтобы изменить направление движения паровоза, нужно так поставить золотник, чтобы он осуществлял впуск пара в нужную полость цилиндра, т. е. надо иметь возможность изменять направление движения золотника. Это осуществляется с помощью кулисы (фиг. 93). Кулиса представляет стальную поковку, в середине которой имеется прорезь, расположенная по дуге. Радиус этой дуги цапфа-равен длине золотниковой тяги. В прорезь, поверхности которой гладко вРнцлисе обработаны, вставляется особая деталь, на Зля камня зываемая камнем. Камень может сколь- клапан тое зить внутри прорези. Сама кулиса укреп- вой смазки ляется в подшипниках и может качаться на цапфах относительно определённого центра. До сих пор рассматривался случай, когда золотник приводился в движение золотниковой тягой непосредственно от золотникового кривошипа (контркривошипа). А что получится, если мы «разрежем» золотниковую тягу и в месте разреза (примерно посередине) шариирно укрепим кулису (фиг. 94). Чтобы контркривошип мог теперь передавать движение золотнику, соединим его с хвостовиком (нижней частью) кулисы тягой,
устройство паровоза

устройство паровоза
называемой кулисной, а камень кулисы с золотником — тягой, называемой золотниковой. Теперь в работе нашего механизма примут участие новые детали-посредники — кулиса и её камень. Если машинист опустит камень ниже центра кулисы, то движение контркривошипа будет передаваться через кулису золотнику в том же направлении, как и в случае, рассмотренном на фиг. 92, т. е. золотник откроет окно для впуска пара в заднюю полость цилиндра и паровоз будет двигаться вперёд. Если же машинист поднимет камень кулисы вверх, выше центра кулисы, то золотник при этом передвинется, открыв окно для впуска пара в переднюю полость, и тогда паровоз будет двигаться назад. Остаётся сделать так, чтобы можно было перемещать камень в кулисе на стоянке и на ходу паровоза. Для этого служит переводной механизм. Он состоит из переводного винта, тяг и рычажной передачи. Посмотрите на фиг. 94. Золотниковая тяга подвеской соединена с двуплечим рычагом, насаженным на переводной вал. Верхнее плечо рычага соединено длинной тягой с переводным рычагом (реверсом), находящимся в будке машиниста. Когда машинист переводит рукоятку реверса вперёд, он заставляет кулисный камень опускаться, когда он переводит рукоятку назад, — камень поднимается. В современных паровозах для перемещения камня кулисы, а следовательно, для изменения направления движения паровоза применяется механизм, действующий сжатым воздухом. Обязанность машиниста сводится к тому, чтобы переставить переводной рычаг по сектору в переднее или заднее положение, которое соответствует переднему или заднему ходу. Перемещение кулисного камня выполняется автоматически благодаря особому механизму — сервомотору, установленному между переводным рычагом и кулисой. Сервомотор (фиг. 95) состоит из цилиндра с поршнем (шток которого соединён с рычагом переводного вала) и распределительной голоеки. Золотник распределительной головки изменяет приток сжатого Еоздуха в цилиндр сервомотора; он связан с переводным рычагом, расположенным в будке машиниста, длинной тягой. Когда машинист переместит переводной рычаг вперёд или назад в требуемое положение, длинная тяга увлечёт за собой рычаг /, который, поворачиваясь вокруг точки А, повернёт золотник в распределительной головке. Перемещаясь, золотник откроет доступ сжатому воздуху в одну из полостей цилиндра сервомотора и выпустит воздух из другой полости. В рез
ультате порш

ПЕРЕГРЕТЫЙ ПАР

Горение и парообразование

Tagged Under : , , , ,

Паровая машина паровоза приводится в действие перегретым паром, т. е. таким, температура которого в 2—2,5 раза выше температуры насыщенного пара при том же давлении. На новейших паровозах температура перегретого пара достигает 450°. Чтобы нагляднее представить себе выгоды, связанные с применением перегретого пара, сопоставим два одинаковых паровоза с давлением пара в котле (по манометру) 15 am. Пусть первый локомотив работает насыщенным паром с влажностью 5%, а второй — перегретым паром, температурой 400°. Паровая машина паровоза, работающего насыщенным паром, потребляет в час примерно 10 000 кг пара. Высчитаем, сколько будет расходовать перегретого пара машина второго паровоза. Установлено, что 1 кг насыщенного пара при давлении 15 am по манометру занимает объём 0,126 мя. Значит, 10 ООО кг пара занимают объём, разный 0,126 х 10 ООО = 1 260 м3. Если же 1 кг пара нагреть при этом же давлении до 400°, то он займёт объём 0,194 м3, а 10 000 кг — 1 940 м8, т. е. на 680 м8 больше, чем такое же весовое количество насыщенного пара. Из этого следует, что для заполнения одного и того же цилиндра (объёма) потребуется меньшее весовое количество перегретого пара. Обращаясь к нашему примеру, видим, что для заполнения в течение часа того же объёма (1 260 м3) перегретым паром потребуется уже не 10 000 кг пара, а только 1 260 : 0,194 = 6 500 кг. Сбережение значительного количества пара, а следовательно, и воды даёт возможность сэкономить топливо при выполнении той же работы. Но может возникнуть вопрос, каким же образом получается экономия топлива, если для перегрева пара требуется добавочное тепло? На первый взгляд кажется, что, выигрывая на увеличении объёма пара, мы проигрываем на затрате тепла, которое требуется для перегрева. Однако это не так. Например, при давлении по манометру 15 am и температуре 200° на приготовление 1 м3 насыщенного пара расходуется 5 200 ккал, а при тех же 15 am и перегревании пара до 400° на получение 1 м3 перегретого пара затрачивается только 4 000 ккал. Использование перегретого пара вместо насыщенного даёт экономию примерно 20—25% топлива и 30—40% воды. Другим ценным свойством перегретого пара по сравнению с насыщенным является то, что он не выделяет капелек воды при охлаждении, расширении или снижении давления, т. е. не конденсируется, пока его температура не достигнет температуры насыщенного пара. Почему вредна конденсация? Пар, превратившийся в воду, естественно, работы не производит, вследствие чего в машину надо вводить некоторое количество добавочного пара. В паровых машинах, работающих насыщенным паром, потери от конденсации составляют 25—60%. Они складываются из потерь на так называемую первоначальную и внутреннюю конденсацию. Не останавливаясь подробно на этих довольно сложных явлениях, отметим лишь главное. Читателю известно, что определённому давлению насыщенного пара соответствует определённая его температура. В цилиндры паровой машины пар впускается при давлении примерно 15 am, а выпускается при давлении 1,5—2 am. При этом впуск и выпуск пара производятся через одни и те же каналы цилиндров. Температура стенок каналов после прохода по ним отработавшего пара будет значительно ниже температуры свежего пара, впускаемого в цилиндры через те же каналы. Из-за соприкосновения со сравнительно холодными внутренними поверхностями каналов и цилиндра часть пара оседает на них в виде росы—• происходит первоначальная конденсация. Внутренняя конденсация в отличие от первоначальной происходит не на стенках каналов и цилиндров, а во всём рабочем объёме цилиндров. При высокой же температуре перегрева пар не конденсируется в течение всего времени нахождения его в цилиндрах машины. Следовательно, потери на конденсацию уменьшаются, а это позволяет уменьшить расход пара.

СВОЙСТВО СМАЗКИ

Трение и борьба с ним

Tagged Under : , ,

Для смазывания трущихся частей паровоза употребляются масла с различными смазывающими свойствами. Это вызывается тем, что условия работы трущихся деталей неодинаковы. Например, цилиндры, поршни, золотники, сальники при работе паровоза соприкасаются с перегретым паром, имеющим температуру до 450°. Другие трущиеся детали, например, параллели, дышловые подшипники и шарнирные соединения, работают при невысокой температуре. Смазочные материалы имеют различные свойства. Одним из важнейших является вязкость. Вязкость (или тягучесть) зависит от сил сцепления между молекулами смазки. От величины вязкости зависит способность смазки образовывать сплошную масляную плёнку, сопротивляющуюся выдавливанию с трущихся поверхностей. Чем выше вязкость смазки, тем меньше она выдавливается трущимися поверхностями. С повышением температуры вязкость уменьшается, а с понижением возрастает. Чем меньше снижается вязкость масла при нагревании, тем лучше. Для смазки различных трущихся деталей паровоза подбирают масла соответствующей вязкости. Для смазывания цилиндров, золотников, параллелей, и некоторых других узлов трения применяется главным образом жидкая смазка. Для смазывания валиков рессорного подвешивания, опор топки: и других деталей паровозов некоторых серий применяется консистентная мазеобразная смазка. Для подшипников дышлового механизма с плавающими втулками применяют консистентную твёрдую смазку. На некоторых паровозах твёрдая смазка применяется в дышловых подшипниках без плавающих втулок, а также в буксах.

УВЕЛИЧИТЕЛЬ СЦЕПНОГО ВЕСА

Сила тяги паровоза

Tagged Under : ,

Обычный паровоз имеет постоянный сцепной вес, так как нагрузка на отдельные движущие колёсные пары остаётся, естественно, неизменной. Чтобы дать машинистам мощное и в то же время удобное в эксплуатации средство увеличивать силу тяги паровоза при трогании с места и при движении по затяжным подъёмам, конструкторами Ворошиловградского паровозостроительного завода было создано специальное устройство — увеличитель сцепного веса. Это устройство, которым оборудован новый грузовой паровоз серии ЛВ и которым в настоящее время оборудуются паровозы серий ФД, Л, СО, Еа , позволяет машинисту в необходимых случаях
устройство паровоза
(например при трогании с места) увеличивать сцепной вес паровоза на 6—7 т, т. е. повышать силу тяги примерно на 1 400 кг. Возможность увеличения силы тяги паровоза на короткий период создаёт благоприятные условия для вождения тяжеловесных поездов и в тоже время позволяет реже прибегать к песку, что}уменьшает износ бандажей, а следовательно, способствует увеличению межремонтных пробегов паровозов. Увеличитель сцепного веса паровоза серии ЛВ устроен просто (фиг. 133). К концам продольных балансиров передней и задней тележек присоединяются штоки трёх воздушных цилиндров, укреплённых на раме.
устройство паровоза
Фиг. 133. Увеличитель сцепного веса Когда устройство включено, то под действием сжатого воздуха, поступающего в цилиндры, концы балансиров, соединённых со штоком, поднимаются. В результате этого часть нагрузки с передней и задней тележек передаётся на движущие оси: сцепной вес паровоза возрастает. Поэтому трогание с места и следование поезда по подъёмам значительно облегчается. Если у паровоза нет задней тележки, то цилиндр увеличителя сцепного веса устанавливается только на балансире передней тележки. В настоящее время в депо проводится опытная проверка паровозов, имеющих увеличители сцепного веса со снятием нагрузки с тендера. На этих паровозах сцепные колёсные пары «берут взаймы часть веса с тендера».

ВОДОПОДОГРЕВАТЕЛЬ

Питание котла и его арматура

Tagged Under : , ,

[Водоподогреватель обеспечивает не только непрерывное питание котла водой, но и более высокую температуру её подогрева (до 95°). Благодаря этому температура различных частей котла при подаче воды изменяется не так резко, а также улучшается тепловая работа котла (экономия топлива 8—10%, экономия воды 10—12%). Основные части водоподогревателя — турбонасос холодной воды, смеситель-подогреватель, поршневой насос горячей воды и система трубопроводов (фиг. 62). При помощи турбонасоса холодная вода, поступающая к нему самотёком из тендера, нагнетается в смеситель-подогреватель. Сюда же от парового потока, проходящего в конусе, отбирается часть (около 15%) отработавшего пара. Для отбора пара в конусе имеется специальный патрубок. В смесителе холодная вода смешивается с паром и подогревается им; горячая вода поршневым насосом нагнетается через питательный клапан в котёл. Такова общая схема работы водоподогревателя. Остановимся на некоторых её особенностях. Всё управление водоподогревателем сводится к открытию или закрытию пускового вентиля, регулирующего число ходов поршневого насоса горячей воды, т. е. его производительность. Производительность водоподогревателя можно регулировать в широких пределах — от 0 до 24 т воды в час (до 400 л/мин). При открытии пускового вентиля (см. фиг. 62) свежий пар из котла поступает к поршневому насосу, а от него через регулирующий золотник поплавкового устройства смесителя-подогревателя к турбонасосу. Поплавковое устройство автоматически регулирует уровень воды в камере смесителя. Если уровень воды в ней поднимется, то шар-поплавок всплывёт и с помощью рычажной передачи переместит регулирующий золотник вниз. При этом доступ свежего пара к турбонасосу прекратится. Последний останавливается и холодная
устройство паровоза
вода из тендера в смеситель-подогреватель не поступит. Но едва уровень воды в камере смесителя опустится, как регулирующий золотник откроет доступ свежему пару к турбонасосу и последний начнёт подачу воды в смеситель в большем или меньшем количестве в зависимости от положения уровня воды в подогревателе. Таким образом, достигается автоматичность в работе водоподогревателя. Чтобы ускорить процесс подогрева, струя воды при входе в смеситель разбрызгивается. Для этого вверху камеры смешения С устанавливается специальный разбрызгивающий клапан, который открывается под давлением воды, создаваемым турбонасосом. Частицы холодной воды быстро конденсируют отработавший пар, поглощая его тепло. Таким образом, в смесителе-подогревателе происходит частичное возвращение тепла, затраченного ранее на приготовление пара. Отработавший в паровой машине пар поступает в камеру смешения С. Пройдя в камеру А смесителя, пар приподнимает обратные клапаны и входит в камеру В. Если бы не было обратных клапанов, то вода из смесителя могла бы проникнуть в камеру А и далее в цилиндры паровой машины, что недопустимо. Для выпуска в атмосферу конденсата, воздуха и других газов, выделяющихся из горячей воды, в смесителе предусмотрены специальные отводы (см. фиг. 24 на стр. 28).

ПАРОВАЯ МАШИНА

Основные части паровоза

Tagged Under : , , , , , , ,

Устройство паровой машины (фиг. 27) подчинено задаче — с наибольшей выгодой преобразовать тепловую энергию пара, созданного в котле, в механическую энергию вращения колёс. Основной частью паровой машины являются цилиндры. Почти на всех паровозах установлено два паровых цилиндра. Размещены они в передней части локомотива, по обе стороны рамы. Для того чтобы при небольших размерах цилиндров получить большую мощность (3 ООО — 3 500 л. с), паровая машина выполняется по принципу двойного действия: пар впускается не с одной стороны поршня, а попеременно с двух сторон. Прежде чем попасть в цилиндры, пар поступает в золотниковые коробки, называемые так потому, что внутри каждой из них находится золот-н и к. Золотник — распределитель пара — осуществляет автоматический впуск свежего пара в цилиндр и выпуск отработавшего. Движение золотников точно согласовано с движением поршней благодаря особому механизму, называемому парораспределитель и ы м. Пар совершает в цилиндре непрерывную работу: поступая в цилиндры попеременно то с передней стороны поршня, то с задней, он заставляет поршень перемещаться то в одну, то в другую сторону. Чтобы использовать работу пара для перемещения паровоза, нужно возвратно-поступательное движение поршней в обоих цилиндрах преобразовать во вращательное движение колёс. Для этой цели служит передаточный механизм, называемый шатунио-кривошипным. Шатунно – кривошипный механизм размещается с каждой стороны паровоза; он состоит из следующих деталей: поршней, ползунов, шатунов (ведущих дышел) и колёсной пары1. Движение поршня через ползун непосредственно передаётся ведущему дышлу, которое и приводит во вращение колёсную пару. Ведущее дышло связано с колесом через палец кривошипа, запрессованный в тело колеса. Все колёсные пары соединяют (спаривают) друг с другом. Делается это для того, чтобы увеличить силу тяги паровоза. Соединение 1 Под колёсной парой понимается ось и наглухо насаженные (напрессованные) на неё два колеса.
устройство паровоза

устройство паровоза

колёсных пар осуществляется несколькими сцепными дышлами. Все спаренные сцепные колёсные пары называются движущими, а одна из них, связанная ведущим дышлом с поршнем паровой машины, называется ведущей. Большинства паровозов имеет 3—5 движущих колёсных пар. Система деталей — поршней, ползунов, ведущих и сцепных дышел, колёсных пар с пальцами кривошипов образует движущий механизм паровоза. Таким образом, к паровой машине относятся: 1) цилиндры, 2) парораспределительный механизм и 3) движущий’ механизм.

РАБОТА И МОЩНОСТЬ ПАРОВОЙ МАШИНЫ

Передача тяги на движущие колёса

Tagged Under : , , , , , , , , ,

Меняющееся давление пара в каждой полости цилиндра «в зависимости от положения поршня можно определить прибором, называемым индикатором. Рассмотрим его устройство и действие на упрощённой схеме (фиг. 99). В крышке парового цилиндра просверлено небольшое отверстие, к которому присоединена трубка. Внутри трубки помещены карандаш поршенёк со штоком и пру-
устройство паровоза
жинка. На конце штока укреплён пишущий наконечник (карандаш), упирающийся своим остриём в полоску бумаги. С помощью рычага бумага приводится в движение от поршня. Если в полость, к которой присоединён индикатор, впустить пар, давление внутри трубки прибора будет равно давлению пара внутри цилиндра (см. фиг. 99, левая полость цилиндра). Фиг.-99.^Упрощённая схема инди- При изменении давления катора карандаш будет пропорцио- нально этому давлению двигаться по бумаге вверх или вниз, а бумага в зависимости от движения поршня будет двигаться вправо или влево. В результате сложения этих движений карандаш вычертит на бумаге замкнутую диаграмму зависимости давления в цилиндре паровой машины от хода поршня. Такая диаграмма называется индикаторной. Она позволяет судить о правильности протекания каждого рабочего процесса, с которыми мы уже познакомились в предыдущей главе. Перед тем как снять индикаторную диаграмму, на бумаге .(в современных индикаторах бумажная лента накручивается на вращающийся барабан, связанный с поршнем специальным ходо-уменьшителем) проводится так называемая атмосферная линия (см. пунктирную линию на фиг. 99). Как показывает само название, атмосферная линия изображает давление окружающей среды. Любая вертикальная линия, проведённая в пределах контура диаграммы, будет соответствовать давлению пара при определённом положении поршня, а горизонтальная — объёму цилиндра или расстоянию, на которое перемещается поршень. На фиг. 100 показаны характерные для паровозной машины индикаторные диаграммы для передней и задней полостей одного цилиндра. В исправной машине с точным парораспределением обе диаграммы должны быть одинаковыми. На индикаторных диаграммах, изображённых на фиг. 100, довольно чётко видны все шесть периодов парораспределения: от точки 6 до точки / происходит предварение впуска, от точки 1 до точки 2 — впуск пара, от точки 2 до точки 3 — расширение, от точки 3 до точки 4 — предварение выпуска, от точки 4 до точки 5— выталкивание и от точки 5 до точки 6— сжатие пара. Площадь индикаторной диаграммы, очерченная карандашом индикатора, выражает в определённом масштабе не что иное, как работу пара, которую он совершает в цилиндре при движении поршня в одну сторону. Но так как паровая машина паровоза — машина двойного действия, то очевидно, что такую же работу произведёт пар, впущенный и в другую полость цилиндра. Следовательно, полная работа пара за два хода поршня будет равна сумме площадей индикаторных диаграмм каждой полости. Во время перемещения поршня давление пара в рабочей полости цилиндра изменяется от максимума до минимума, поэтому работу пара в цилиндрах подсчитывают по средней величине его давления за весь ход поршня. Это давление, величина которого условно принята постоянной, называется средним индикаторным давлением. Оно будет тем больше, чем больше степень наполнения (отсечка)
устройство паровоза
цилиндра, и тем меньше, чем меньше отсечка при одной и той же скорости. Иными словами, среднее индикаторное давление будет зависеть от продолжительности впуска. Если среднее индикаторное давление умножить на площадь поршня, то получим среднюю силу, приложенную к поршню. Если теперь эту силу умножить на расстояние, проходимое поршнем, то найдём работу, которую совершит пар, действующий на поршень за один его ход в одной полости цилиндра. Очевидно, что работа пара в обоих цилиндрах паровой машины будет вчетверо больше (пар действует в обеих полостях цилиндра, а цилиндров у паровоза обычно два). Поясним это примером. Пусть среднее индикаторное давление равно 8,5 кг/см*, а площадь поршня 3 416,6 см2. Тогда сила давления на поршень (средняя) определится так: 8,5 X 3 416,6 = 29041 кг. Пусть ход поршня равен 80 см, или 0,8 м. Работа, которую произведёт пар при движении поршня из одного крайнего положения в другое, будет равна произведению силы на путь её действия, т. е. на ход поршня: 29 041 х 0,8 = 23 232,8 кгм. За два хода поршня работа будет в два раза больше, т. е. 23 232,8 х 2 = 46 465,6 кгм. В двух цилин
драх работа